Language is implicit — it omits information. Filling this information gap requires contextual inference, background- and commonsense knowledge, and reasoning over situational context. Language also evolves, i.e., it specializes and changes over time. For example, many different languages and domains exist, new domains arise, and both evolve constantly. Thus, language understanding also requires continuous and efficient adaptation to new languages and domains — and transfer to, and between, both. Current language understanding methods, however, focus on high resource languages and domains, use little to no context, and assume static data, task, and target distributions.
The research in Cora4NLP aims to address these challenges. It builds on the expertise and results of the predecessor project DEEPLEE and is carried out jointly between DFKI’s language technology research departments in Berlin and Saarbrücken. Specifically, our goal is to develop natural language understanding methods that enable:
Cora4NLP is funded by the German Federal Ministry of Education and Research (BMBF) under funding code 01IW20010.
One paper from Cora4NLP researchers has been accepted for publication at KONVENS 2023, the 19th German Conference on Natural Language Processing. The conference will take place in Ingolstadt, Germany, from Sep 18th to Sep 22nd, 2023.
Two papers from Cora4NLP researchers have been accepted for publication at ACL 2023, the 61st Annual Meeting of the Association for Computational Linguistics. The conference is planned to be a hybrid meeting and will take place in Toronto, Canada, from Jul 9th through July 14th, 2023.
We are happy to announce that two papers from Cora4NLP members have been accepted for publication at the 17th Conference of the European Chapter of the Association for Computational Linguistics. The conference will take place from May2nd to May 6th, 2023.
One paper from Cora4NLP authors has been accepted for publication at CoNLL 2022, the SIGNLL Conference on Computational Natural Language Learning. The conference is co-located with EMNLP 2022 and planned to be a hybrid meeting.
Two papers from Cora4NLP authors have been accepted for publication at EMNLP 2022, the 2022 Conference on Empirical Methods in Natural Language Processing. The conference is planned to be a hybrid meeting and will take place in Abu Dhabi, from Dec 7th to Dec 11th, 2022.
Factuality can play an important role when automatically processing clinical text, as it makes a difference if particular symptoms are explicitly not present, possibly present, not mentioned, or affirmed. In most cases, a sufficient number of examples is necessary to handle such phenomena in a supervised machine learning setting. However, as clinical text might contain sensitive information, data cannot be easily shared. In the context of factuality detection, this work presents a simple solution using machine translation to translate English data to German to train a transformer-based factuality detection model.
In this paper we describe the task of adapting NLP models to dialogue processing in the emergency response domain. Our goal is to provide a recipe for building a system that performs dialogue act classification and domain-specific slot tagging while being efficient, flexible and robust. We show that adapter models (Pfeiffer et al., 2020) perform well in the emergency response domain and benefit from additional dialogue context and speaker information. Comparing adapters to standard fine-tuned Transformer models we show that they achieve competitive results and can easily accommodate new tasks without significant memory increase since the base model can be shared between the adapters specializing on different tasks. We also address the problem of scarce annotations in the emergency response domain and evaluate different data augmentation techniques in a low-resource setting.
Relation extraction (RE) is a fundamental task in information extraction, whose extension to multilingual settings has been hindered by the lack of supervised resources comparable in size to large English datasets such as TACRED (Zhang et al., 2017). To address this gap, we introduce the MultiTACRED dataset, covering 12 typologically diverse languages from 9 language families, which is created by machine-translating TACRED instances and automatically projecting their entity annotations. We analyze translation and annotation projection quality, identify error categories, and experimentally evaluate fine-tuned pretrained mono- and multilingual language models in common transfer learning scenarios. Our analyses show that machine translation is a viable strategy to transfer RE instances, with native speakers judging more than 83% of the translated instances to be linguistically and semantically acceptable. We find monolingual RE model performance to be comparable to the English original for many of the target languages, and that multilingual models trained on a combination of English and target language data can outperform their monolingual counterparts. However, we also observe a variety of translation and annotation projection errors, both due to the MT systems and linguistic features of the target languages, such as pronoun-dropping, compounding and inflection, that degrade dataset quality and RE model performance.
The anonymity on the Darknet allows vendors to stay undetected by using multiple vendor aliases or frequently migrating between markets. Consequently, illegal markets and their connections are challenging to uncover on the Darknet. To identify relationships between illegal markets and their vendors, we propose VendorLink, an NLP-based approach that examines writing patterns to verify, identify, and link unique vendor accounts across text advertisements (ads) on seven public Darknet markets. In contrast to existing literature, VendorLink utilizes the strength of supervised pretraining to perform closed-set vendor verification, open-set vendor identification, and low-resource market adaption tasks. Through VendorLink, we uncover (i) 15 migrants and 71 potential aliases in the Alphabay-Dreams-Silk dataset, (ii) 17 migrants and 3 potential aliases in the Valhalla-Berlusconi dataset, and (iii) 75 migrants and 10 potential aliases in the Traderoute-Agora dataset. Altogether, our approach can help Law Enforcement Agencies (LEA) make more informed decisions by verifying and identifying migrating vendors and their potential aliases on existing and Low-Resource (LR) emerging Darknet markets.
Dense vector representations for textual data are crucial in modern NLP. Word embeddings and sentence embeddings estimated from raw texts are key in achieving state-of-the-art resultsin various tasks requiring semantic understanding. However, obtaining embeddings at the document level is challenging due to computational requirements and lack of appropriate data. Instead, most approaches fall back on computing document embeddings based on sentence representations. Although there exist architectures and models to encode documents fully, they are in general limited to English and few other high-resourced languages. In this work, we provide a systematic comparison of methods to produce document-level representations from sentences based on LASER, LaBSE, and Sentence BERT pre-trained multilingual models. We compare input token number truncation, sentence averaging as well as some simple windowing and in some cases new augmented and learnable approaches, on 3 multi- and cross-lingual tasks in 8 languages belonging to 3 different language families. Our task-based extrinsic evaluations show that, independently of the language, a clever combination of sentence embeddings is usually better than encoding the full document as a single unit, even when this is possible. We demonstrate that while a simple sentence average results in a strong baseline for classification tasks, more complex combinations are necessary for semantic tasks.